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ABSTRACT

This chapter provides essential information needed for the proper use of meteorological data in
air quality modeling systems.  Sources of meteorological data are diverse and many difficulties
can arise while linking these with air quality models.  To provide an integral view of atmospheric
modeling, a robust and fully compressible governing set of equations for the atmosphere is
introduced.  Limitations of several simplifying assumptions on atmospheric dynamics are
presented.  Also, concepts of on-line and off-line coupling of meteorological and air quality
models are discussed.

When the input meteorological data are recast with the proposed set of governing equations,
chemical transport models can follow the dynamic and thermodynamic descriptions of the
meteorological data closely.  In addition, this chapter introduces a procedure to conserve mixing
ratio of trace species even in the case meteorological data are not mass consistent.  In summary,
it attempts to bridge the information gap between dynamic meteorologists and air quality
modelers by highlighting the implication of using different meteorological coordinates and
dynamic assumptions for air quality simulations.
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5.0 FUNDAMENTALS FOR ONE-ATMOSPHERE MODELING FOR MULTISCALE

AIR QUALITY MODELING

To simulate weather and air quality phenomena realistically, adaptation of a one-atmosphere
perspective based mainly on Òfirst principlesÓ description of the atmospheric system (Dennis,
1998) is necessary.  The perspective emphasizes that the influence of interactions at different
dynamic scales and among multi-pollutants cannot be ignored.  For example, descriptions of
processes critical to producing oxidants, acid and nutrient depositions, and fine particles are too
closely related to treat separately.  Proper modeling of these air pollutants requires that the broad
range of temporal and spatial scales of multi-pollutant interactions be considered simultaneously.
Several chapters (Chapters 4, 8, 9, 11 and 16) of this document present the one-atmosphere
modeling perspective related with the multi-pollutant chemical interactions.  Another key aspect
of the one-atmosphere perspective is the dynamic description of the atmosphere.  This is the
focus of the present chapter.

Air quality modeling should be viewed as an integral part of atmospheric modeling and the
governing equations and computational algorithms should be consistent and compatible.
Previously, many atmospheric models have been built with limited atmospheric dynamics
assumptions.  To simplify the model development process, the governing equations were first
simplified to match with the target problems, then computer codes were implemented.  This
approach enabled rapid development of models.  However, we believe that dynamic assumptions
and choice of coordinates should not precede the computational structure of the modeling
system.  To provide the scalability in describing dynamics, a fully compressible governing set of
equations in a generalized coordinate system is preferable.  Once the system is based on the fully
compressible governing equations, simpler models can be built readily.  The characteristics of
the vertical coordinates and other simplifying assumptions need to be considered as well.  For
successful one-atmosphere simulations, it is imperative to have consistent algorithmic linkage
between meteorological and chemical transport models (CTMs).

The present chapter addresses the issue of consistent description of physical processes across
scales in meteorological and air quality modeling systems.  It intends to provide appropriate
background information to properly link air quality and meteorological models at a fundamental
level.  It deals with dynamic scalability issues, such as hydrostatic and nonhydrostatic modeling
covering wide range of both temporal and spatial scales.  Some of the contents are extracts from
Byun (1999a and b) and others are complementary information to them.  It includes mass
correction methods, mass conservative temporal interpolation method, and the coupling
paradigm for meteorology and chemical transport models.

5.1 Governing Equations and Approximations for the Atmosphere

In most weather prediction models, temperature and pressure, as well as moisture variables, are
used to represent thermodynamics of the system.  Often these thermodynamic parameters are
represented with the advective form equations in meteorological models.  Most of time, the
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density is diagnosed as a byproduct of the simulation, usually through the ideal gas law.  For
multiscale air quality applications where the strict mass conservation is required, prognostic
equations for the thermodynamic variables are preferably expressed in a conservative form
similar to the continuity equation.  Recently, Ooyama (1990) has proposed the use of prognostic
equations for entropy and air density in atmospheric simulations by highlighting the
thermodynamic nature of pressure.  Entropy is a well-defined state function of the
thermodynamic variables such as pressure, temperature, and density.  Therefore, entropy is a
field variable that depends only on the state of the fluid.  The principle he uses is the separation
of dynamic and thermodynamic parameters into their primary roles.  An inevitable interaction
between dynamics and thermodynamics occurs in the form of the pressure gradient force.

In this section, a set of governing equations for fully compressible atmosphere is presented.
Here, density and entropy are used as the primary thermodynamic variables.  For simplicity, a
dry adiabatic atmosphere is considered.  Most of the discussions in this section should be
extensible for moist atmosphere if OoyamaÕs approach is followed.

5.1.1 Governing Equations in a Generalized Curvilinear Coordinate System

Using tensor notation, the governing set of equations for the dry atmosphere in a generalized
curvilinear coordinate system can be written as:
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where v̂ j  and v̂ k  are contravariant and covariant wind components, respectively, ;̂v k
j  represents

the covariant derivative of contravariant vector, ε̂ jkl  is the Levi-Cevita symbol, Ωk  is the angular

velocity of earthÕs rotation, F̂r
j  represents frictional forcing terms, γ̂  is the Jacobian of

coordinate transformation, Φ  is geopotential height, ρ is air density, and ĝ jk  represents
components of gravity vector in tensor form.  Refer to Appendix 5A for the tensor primer and the
derivation of the continuity equation in a generalized curvilinear coordinate system. ϕ i

represents trace species concentration, and ζ is (dry air) entropy per unit volume (entropy
density), given as
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where T  is temperature, Too and ρoo  are temperature and density of the reference atmosphere,

respectively, at pressure poo  = 1000 mb = 105 Pascal, Cvd  is the specific heat capacity  at

constant volume, and Rd is the gas constant for dry air.  The Q-terms represent sources and sinks
of each conservative property.  Although the source term for air density (Qρ ) should be zero in

an ideal case, it is retained here to capture the possible density error originating from numerical
procedures in meteorological models.  It is important to understand how this error term
influences computations of other parameters such as vertical velocity component.  Effects of the
error term on trace gas simulation are discussed later.

To close the system we need to utilize the ideal gas law and the thermodynamic relations for
temperature, entropy, pressure gradients, and density.  Here, atmospheric pressure is treated as a
thermodynamic variable that is fully defined by the density and entropy of the atmosphere.
Then, pressure gradient terms can be computed using the thermodynamic relations with the
density and entropy (e.g., Batchelor, 1967; Ooyama, 1990; DeMaria, 1995) in terms of the
general vertical coordinate s x= ˆ3, as:
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where Cpd  is the specific heat capacity at constant pressure for dry air, and

∇ = +
= =s s const s const

x xˆ / ˆ ˆ / ˆi j∂ ∂ ∂ ∂1 2 .  For a conformal map projection, we can relate generalized

meteorological curvilinear coordinates  ( ˆ , ˆ , ˆ , ˆ)x x x t1 2 3  to the reference rotated earth-tangential
coordinates ( , , , )x y z t  as
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where m is the map scale factor, zsfc  is the topographic height, and h is the geometric height, and

hAGL represents height above the ground (AGL).  In the derivation of Equations 5-7a,b, we
neglected the first-order variations of the map scale factor in x- and y-directions.  The
approximation establishes a quasi-orthogonality of the vertical coordinate to the horizontal plane
on the confomal map.  The covariant metric tensor, for example, and its determinant are given as
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With above relations, one can rewrite the governing momentum equation, Equation 5-1, into the
horizontal and vertical components of the curvilinear coordinates as (Byun, 1999a):
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where ˆ ˆ  ˆV i js v v= +1 2 , Φ( ˆ , ˆ , ˆ , ˆ)x x x t gz1 2 3 =  represents the geopotential height, F̂s  is the horizontal

forcing vector, ˆ τ 3  is the vertical tangential basis vector and F̂3 is the forcing term in the

momentum equation for ˆ x 3  direction.

An alternative equation for the Cartesian vertical velocity component is given as:
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where V i j i jz U V v m v m= + = + ( ˆ / )  ( ˆ / )1 2  is the horizontal wind vector represented in the
Cartesian coordinate system, w is the vertical velocity component, Js  is the Jacobian for vertical

coordinate transformation ( J
h

s g s
ms = = =∂

∂
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γ1 2Φ ˆ ), and F3 is forcing term for the w-

component.  Note that the contravariant vertical velocity component is related to the Cartesian
vertical velocity as:
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where ∇ = += =z z const z const
x yˆ / ˆ /i j∂ ∂ ∂ ∂ .

The conservation equations for air density, entropy density, and tracer concentrations are found
to be:
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5.1.2 Assumptions of Atmospheric Dynamics

In this subsection, several popular assumptions used in meteorological models are reviewed.
Here, the dynamic and thermodynamic assumptions are discussed separately because they have
been applied as independent approximations in many atmospheric models.  However, readers
should be aware of the inseparable nature of the dynamics and thermodynamics of the
atmosphere.  This study focuses on the impact of basic assumptions of the mass conservation
issues and limits of applications in air quality applications.

5.1.2.1 Boussinesq Approximation

The crux of the Boussinesq approximation is that variation in density is important only when it is
combined as a factor with the acceleration of gravity. Originally, it was applied for studying
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shallow convection or boundary layer dynamics.  Descriptions of the Boussinesq approximation
can be found in the literature (e.g., Arya, 1988; Pielke, 1984; Stull, 1988; and Thunis and
Bornstein, 1996).  Although the Boussinesq approximation was originally developed for
incompressible fluid, Dutton and Fichtl (1969) expanded the concept for anelastic deep
convection applications.  The results of the approximation lead to the following simplifications
of the equations of motions in the planetary boundary layer (PBL):

(1) Flows can be treated essentially as solenoidal either in velocity field (incompressible) or
in momentum field (anelastic).

(2) The equation of state for the fluctuating component is simplified because the ratio of
fluctuating density to total density can be approximated by the ratio of temperature
fluctuation to the reference temperature.

(3) Molecular properties including diffusivity are constant.  These approximations are often
used in air quality modeling to simplify the equations of motions and trace gas
conservation equations.  The effect of the Boussinesq approximation on mass continuity
is in the limitation of the flow characteristics, such as incompressible or anelastic.  For
multiscale atmospheric studies, this approximation may be used only in the
parameterization of the surface fluxes where the density can be treated essentially
independent of height.

5.1.2.2 Nondivergent Flow Field Assumption

Essentially, this is an assumption about flow characteristics.  The basis of this assumption is
purely dynamic although an incompressible assumption leads to the nondivergent flow
approximation.  A priori, there is no connection with atmospheric thermodynamics.  Therefore
this assumption does not provide any information about the state variables, such as density,
temperature, and pressure fields.  For atmospheric applications, this approximation should be
viewed as a result of the incompressible atmosphere assumption linked through the continuity
equation of air.  Because of the characteristics that the nondivergent velocity field can be
expressed as the curl of a vector stream function, the field is also called solenoidal.  Implications
of this assumption on mass conservation of trace species are presented below in the description
of the incompressible atmosphere assumption.  In the generalized coordinate system, the
nondivergent flow field is represented with following equation

1
0

ˆ

ˆ ˆ

ˆγ

∂ γ

∂

v

x

j

j

( )
= , j = 1 2 3, , (5-14)

This is somewhat different from the meteorological nondivergent flow field assumption in the
Cartesian coordinate system, ∇ • =V 0.  In the generalized meteorological coordinate system,
Equation 14 can be rewritten as
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The two additional terms represent essentially the effects of the map projection and the gradient
of the vertical Jacobian on the divergence of wind.  For a small domain and for a coordinate
whose vertical Jacobian is constant with respect to height (e.g., σ z -coordinate), Equation 14Õ
becomes identical to the nondivergent wind flow assumption used in a meteorological model.
When the vertical Jacobian is a function of air density, the dependency of the wind on the density
distribution cannot be ignored.

5.1.2.3 Incompressible Atmosphere Assumption

This is an assumption about the thermodynamic characteristics of air.  The equation of state
describes how density is affected by the changes in pressure and temperature fields. The
incompressibility of air can be assumed (Batchelor, 1967) if:

1
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, (5-15)

where U and L are the velocity and length scales, respectively, of the atmospheric motion.

As proposed in Byun (1999a), one can choose the density and the entropy as the two independent
parameters of state.  The total derivative of pressure with respect to time can be expressed as:
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Then, Equation 5-15 becomes the relation:
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where csound  is the speed of sound in the atmosphere, i.e., c psound = ∂ρ ∂/ .  Batchelor (1967)

stated that for Equation 5-17 to be satisfied, not only the difference between the two terms in the
left hand side of Equation 5-17, but also the magnitude of each term should be small.  When the
condition

1
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<< (5-18)

is satisfied, the change in the density of a material element due to pressure variations are

negligible, that is, the fluid is behaving as if it were incompressible.  By expanding the term 
dp

dt
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in an Eulerian expression one can show that in order for the atmosphere to be treated as
incompressible, the following conditions must be satisfied:
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whereUp  is the phase speed of dominant atmospheric waves.  The first condition states that the

movement of air should have a Mach number much smaller than one, say 10%; the second
condition states that energy-carrying waves should not propagate as fast as 10% of the speed of
sound; and the last condition limits the vertical extent of motion to less than about one kilometer.
Similarly, Dutton and Fichtl (1969) showed that the nondivergent wind relation is generally
applicable up to half a kilometer above ground level through a scale analysis of the continuity
equation.  Because of these limitations, a meteorological model with incompressible flow
approximation may not be suitable for multiscale air quality simulations that require descriptions
of atmospheric motions over a wide range of temporal and spatial scales.  The second condition:
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means that variation of entropy due to internal heating or due to molecular conduction of heat
into the element must be small.  For adiabatic or pseudo-adiabatic atmosphere, Equation 5-20 is
usually satisfied.

Basically, an incompressible atmosphere assumption is a shallow-water approximation for an
adiabatic atmosphere.  With the incompressibility assumption, the distinction between the
continuity equation and its advective form becomes blurred.  Consequently, concentrations in the
form of either density or mixing ratio are often used indiscriminately in atmospheric diffusion
equations.  As presented above, the incompressible atmosphere assumption is a very restrictive
approximation that disassociates linkage between the thermodynamics and dynamics of
atmospheric motions.  The incompressible atmosphere approximation simplifies the continuity
equation of the air to the nondivergent wind component relation regardless of the type of vertical
coordinates used. Compared with this, the atmosphere described with the hydrostatic pressure
coordinate is not necessarily incompressible even for the hydrostatic atmosphere.  Because the
vertical layer is defined by the pressure surface, the hydrostatic approximation applied with the
hydrostatic pressure coordinate system limits only the vertical propagation of sound waves and
the atmosphere is not totally incompressible.

One might expect that as long as the wind field satisfies the nondivergent flow approximation, an
air quality model would satisfy the pollutant species mass conservation.  In the following, it is
shown that this expectation is correct only when the air density field is perfectly mass consistent.
As will be shown later in Equation 5-24, the trace species mass conservation is affected by the
air density error term Qρ  irrespective of whether or not the wind field is solenoidal.  The

implication is that a nondivergent wind field does not guarantee the mass conservation of
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pollutant species as long as there is inconsistency in air density and wind fields.  It is not a
surprising statement, but in general this fact has not been actively addressed in air quality
modeling studies.  Because the nondivergent relation simply disassociates density and wind
fields, it cannot be used to estimate the mass consistency error in the meteorological data set.  On
the other hand, the diagnostic relations applicable for the family of hydrostatic pressure
coordinates based on total air density maintain the consistency in wind and air density fields.

5.1.2.4 Anelastic Atmosphere Assumption

Another popular limiting approximation applied in meteorological modeling is the anelastic
assumption.  It simplifies the continuity equation as a diagnostic relation for the momentum
( ρoV , where ρo  is density of reference atmosphere) components as follows:

∇ • + =s o s os
v( ˆ ˆ ) ( ˆ ˆ )γ ρ ∂

∂
γ ρV 3 0 (5-21)

Ogura and Phillips (1962) and Dutton and Fitchl (1969) found that for deep atmospheric
convection, if the characteristic vertical scale of motions is smaller than the atmospheric scale
height, the anelastic assumption is satisfied.  For shallow convection, the Boussinesq
approximation allows us to treat the fluid as incompressible; for deep convection, the
approximate continuity equation requires the momentum field to be solenoidal, and the
expansion or contraction of parcels moving in the vertical is taken into account.  Lipps and
Hemler (1982) also performed a scale analysis to propose a set of approximate equations of
motion which are anelastic when the time scale is larger than the inverse of Brunt-V�is�la
frequency.  The anelastic approximation leads to a divergent wind field, i.e.:
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Usually, the right hand side of Equation 5-22 does not vanish.  Like the nondivergent wind field
approximation, this assumption provides a diagnostic relation among wind components although
it cannot be used to estimate the inconsistency in the total air density, ρ, and wind field data
provided by a meteorological model.  However, unlike the incompressible atmosphere
assumption, the pressure, temperature and wind fields are not completely independent with the
anelastic assumption.  The distribution of pressure must be such that the wind fields predicted by
the momentum equations continue to satisfy the anelastic relation (Gal-Chen and Somerville,
1975).  For this reason, most anelastic meteorological models solve for the elliptic equation for
the pressure that is derived from Equation 5-22.  Refer to Nance and Durran (1994) for a recent
review on the accuracy of anelastic meteorological modeling systems.

For air quality application, the anelastic approximation still requires use of a full continuity
equation for the perturbation density component.  However, most anelastic meteorological
models do not solve for the perturbation air density directly.  Therefore, one needs to infer it
from other thermodynamic fields.  Also, because the trace gas concentration depends on the total
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density of air, not on just the reference density, it does not simplify the pollutant continuity
equation and the concentration distribution represented in density units cannot be interchanged
with trace species mixing ratio.

5.1.2.5 Hydrostatic Atmosphere Approximation

Perhaps one of the most popular assumptions of atmospheric dynamics used in meteorological
models is the hydrostatic approximation.  In the case of a hydrostatic atmosphere, the
acceleration and the frictional force terms in the z-direction of the earth-tangential Cartesian
coordinates are considered negligible.  In earlier days of atmospheric modeling, the hydrostatic
approximation was usually applied with the pressure coordinate.  It is well known that the
hydrostatic pressure coordinate applied to a hydrostatic atmosphere has a special property that
simplifies the continuity equation into a solenoidal form and provides a diagnostic equation for
the vertical velocity component.  On the other hand, the geometric height coordinate was not
used extensively for studying a hydrostatic atmosphere.  Recently, Ooyama (1990) and DeMaria
(1995) have presented a diagnostic vertical velocity equation.  Extending this, a general
diagnostic equation for the vertical velocity component can be obtained with the hydrostatic
approximation for a coordinate whose Jacobian is independent of time (Byun, 1999a):
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The diagnostic Equation 5-23 can be used to maintain mass consistency in meteorological data
for air quality simulations.

It is worthwhile to note that the hydrostatic or nonhydrostatic atmospheric description, which is a
characterization of the vertical motion, is rather independent from either the
compressible/incompressible atmosphere or the anelastic atmosphere assumption, which is an
approximation of the mass continuity equation.  Choices of the assumptions from the two distinct
groups have been used to simplify atmospheric motions, although some of the combinations,
such as compressible but hydrostatic atmosphere, are rarely used in atmospheric studies.

5.2 Choice of Vertical Coordinate System for Air Quality Modeling

Figure 5-1 provides a pedigree of vertical coordinates used in many atmospheric models.
Definitions of the coordinates are provided in Tables 5-1, 5-2 and 5-3.  The hierarchy of
classification is: (1) temporal dependency of coordinates, (2) base physical characteristic of
coordinate variables, and (3) method of topography treatments.  Application assumptions, such
as hydrostatic or nonhydrostatic atmosphere approximations, are not part of the classification
criteria.  Isentropic coordinates are not included here because they are not suitable for the
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regional and urban scale air quality simulation due to their inherent difficulties representing
planetary boundary layer (PBL) structure.  For larger-scale simulations, an isentropic coordinate
system can serve as an interesting alternative (Arakawa et al., 1992).  Also, there are new
developments of hybrid coordinates that combine isentropic coordinates with other coordinates
to mitigate the problem.

Many different types of vertical coordinates have been used for various meteorological
simulations.  For example, the geometric height is used to study boundary layer phenomenon
because of its obvious advantage of relating near surface measurements with modeled results.
Pressure coordinates are natural choices for atmospheric studies because many upper
atmospheric measurements are made on pressure surfaces.  Because most radiosonde
measurements are based on hydrostatic pressure, one may prefer use of the pressure coordinate
to study cloud dynamics.  This idea of using the most appropriate vertical coordinate for
describing a physical process is referred to as a generic coordinate concept (Byun et al., 1995).
Several different generic coordinates can be used in a CTM for describing different atmospheric
processes while the underlying model structure should be based on a specific coordinate
consistent with the preprocessor meteorological model.  The Models-3 Community Multiscale
Air Quality (CMAQ) modeling system allows users to choose a specific coordinate without
having to exchange science process modules (i.e., subroutines with physical parameterizations
for describing atmospheric processes) which are written in their generic coordinates.  The
coordinate transformation is performed implicitly through the use of Jacobian within CMAQ.

Byun (1999a) discusses key science issues related to using a particular vertical coordinate for air
quality simulations.  They include a governing set of equations for atmospheric dynamics and
thermodynamics, the vertical component of the Jacobian, the form of continuity equation for air,
the height of a model layer (expressed in terms of geopotential height), and other special
characteristics of a vertical coordinate for either hydrostatic or nonhydrostatic atmosphere
applications.  Tables 5-1, 5-2 and 5-3 summarize properties of the popular time-independent
vertical coordinates (e.g., terrain-influenced height and the reference hydrostatic pressure
coordinate systems) and the time-dependent terrain-influenced coordinate systems, respectively.

Not only the assumptions on atmospheric dynamics, but also the choice of coordinate can affect
the characteristics of atmospheric simulations.  For the time-independent vertical coordinates (z,
po, sigma-z, sigma-po), the vertical Jacobians are also time-independent.  Especially with the
hydrostatic assumption, one can obtain a diagnostic equation for the vertical velocity component
, which includes soundwaves together with meteorological signals.  Further assumptions on flow
characteristics, such as anelastic approximation, provide a simpler diagnostic equation for the
nonsolenoidal air flow.  For such cases, with or without the anelastic approximation, one can
maintain trace species mass conservation in a CTM by using the vertical velocity field estimated
from the diagnostic relation.  The scheme works whether the horizontal wind components,
temperature, and density field data are directly provided from a meteorological model or
interpolated from hourly data at the transport time step.  This suggests that the mass error can be
estimated with the diagnostic relations that originate from one of the governing equations of the
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preprocessor meteorological models.  For a nonhydrostatic atmosphere, which does not have a
special diagnostic relation for time independent coordinates, one should rely on the methods
described below to account for the mass consistency errors.

For time dependent coordinates, the vertical Jacobians are also time dependent.  In general, this
makes it more difficult to derive a diagnostic relation from the continuity equation.  However,
for a coordinate with the Jacobian-weighted air density independent of height, a diagnostic
equation for the vertical velocity is available when appropriate top and bottom boundary
conditions are used.  Vertical layers defined with this type of vertical coordinate are considered
as material surfaces because mass continuity can be satisfied in a diagnostic fashion.  Air
particles are not expected to cross material surfaces during the advection process.  An
atmospheric model based on this type of coordinate may not have a mass consistency problem
except for numerical reasons.  The dynamic pressure coordinates based on true air density belong
to this category, which includes such coordinates as π  -coordinate,σπ -coordinate, and the η -

coordinate defined in conjunction with σπ  (See Table 5-3).  A meteorological model using one

of these coordinates will conserve mass within the limits of numerical errors expected from finite
differencing and computer precision.  For these coordinates, one can apply the same mass
conservation procedure for both hydrostatic and nonhydrostatic cases.  Note that the diagnostic
relations obtained by appropriate choices of coordinates and assumptions on atmospheric
dynamics allow estimation of the density error term in the continuity equation.  This information
can be used to reconstruct mass-consistent air density and wind fields that ensure mass
conservation of pollutant species in air quality models.
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Figure 5-1.  Pedigree of meteorological vertical coordinates.  The encircled T symbol  represents
that the associated coordinates are identical when temporal dependency is ignored.  Dashed-
circles show that all the coordinates can be used for hydrostatic (HYD) and nonhydrostatic
(NHY) application, regardless of the dynamic characteristics of the variables used to define
vertical coordinates.
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Table 5-1.  Summary of Characteristics of the Geometric Height and Pressure Coordinate
Systems. [Note: HYD and NHY stand for hydrostatic and nonhydrostatic applications,
respectively.  D( ) and P( ) symbols are assigned for diagnostic and prognostic formulas with
equation numbers. ρo  and ρ̃  are the reference and dynamic (time-dependent) hydrostatic

pressure, respectively.]

Coordinate vertical velocity Vertical Jacobian Geopotential height

geometric height
( )z
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Table 5-2.  Summary of Time Independent Terrain-influenced Height and Reference Hydrostatic
Pressure Coordinate Systems.  [Note: D( ) and P( ) symbols are assigned for diagnostic and
prognostic formulas with equation numbers, respectively, and Ô≠ Ä( )Õ represents that the
parameter is not dependent on the argument.]

Coordinate Application Vertical Momentum Vertical
Jacobian

Geopotential height

normalized
geometric
height ( )σ z

hydrostatic D(5-23)

σ z
sfc

sfc

z z

H z
=

−
−

generalized
hydrostatic P(5-9) or,
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J H z
z sfcσ = −

≠ Ä ( ˆ , )x t3

Φ = =gz
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Table 5-3.  Summary of Characteristics of the Time Dependent Terrain-influenced Coordinate
Systems.

Coordinate Applicatio
n

Vertical Momentum Vertical
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5.3 Coupling of Meteorology and Air Quality

Characteristics of air quality model simulations are heavily dependent on the quality of the
meteorological data.  Meteorological data for air quality can be provided either by diagnostic
models, which analyze observations at surface sites and upper air soundings, or by dynamic
models with or without four-dimensional data assimilation (FDDA).  Readers are referred to
Seaman (1999) for a state-of-science review on this topic.  In the next section a dynamic
modeling with FDDA approach, which is used in the Models-3 CMAQ system, is described.

5.3.1 Meteorological Data for Air Quality Modeling

Meteorological simulations are applied to drive a CTM for solving atmospheric diffusion
equations for trace species.  For regional scale simulations, whose problem size is continental
scale or somewhat smaller, hydrostatic meteorological models have been used, usually with
FDDA.  For small scale simulations where topographic effects are important, nonhydrostatic or
compressible atmospheric models are used.  These differences in the assumptions used for
atmospheric characterization affect air quality simulations greatly.

Meteorological data can be supplied by running dynamic models prognostically, or with the
archived reanalysis data routinely available as a part of numerical weather forecasting for air
quality simulations (Schulze and Turner, 1998).  Currently, GCIP (GEWAX Continental-scale
International Project) provides an archive of the Eta model reanalysis of surface and upper air
fields at 48 km resolution (Leese, 1993; Kalany et al., 1996).  Based on the success of GCIP, the
National Center for Environmental Prediction (NCEP), NOAA, is planning to archive regional
reanalysis at a higher resolution.  Similarly, the Mesoscale Analysis and Prediction
System/Rapid Update Cycle (MAPS/RUC) of the Forecast Systems Laboratory (FSL), NOAA,
produces accurate and timely analyses and short-term forecasts at 40-60 km resolutions
(Benjamin et al., 1995, 1998).  The output data are archived at 1-3 hour intervals on 25-34 levels.
These alternative data sources are promising because of the wealth of observation data used for
the reanalysis and the availability of long-term meteorological characterization data suitable for
seasonal or annual assessment studies.

5.3.2 Off-line and On-line Modeling Paradigms

Air quality models are run many times to understand the effects of emissions control strategies
on the pollutant concentrations using the same meteorological data.  A non-coupled prognostic
model with FDDA can provide adequate meteorological data needed for such operational use.
This is the so-called off-line mode air quality simulation. However, a successful air quality
simulation requires that the key parameters in meteorological data be consistent.  For example, to
ensure the mass conservation of trace species, the density and velocity component should satisfy
the continuity equation accurately.  Details of this issue will be discussed below.

If air quality is solved as a part of the meteorology modeling, this data consistency problem
would be much less apparent.  Dynamic and thermodynamic descriptions of operational
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meteorological models should be self-consistent, and necessary meteorological parameters are
readily available at the finite time steps needed for the air quality process modules during the
numerical integration.  The ultimate goal within atmospheric community is the development of a
fully integrated meteorological-chemical model (Seaman, 1995).  This is the so-called on-line
mode air quality simulation.  There have been a few successful examples of integrating
meteorology and atmospheric chemistry algorithms into a single computer program (e.g., Vogel
et al., 1995).  For certain research purposes, such as studying two-way interactions of radiation
processes, the on-line modeling approach is needed.  However, the conventional on-line
modeling approach, where chemistry-transport code is imbedded in one system, exhibits many
operational difficulties.  For example, in addition to tremendously increasing the computer
resource requirements, differences in model dynamics and code structures hinder development
and maintenance of a fully coupled meteorological/chemical/emissions modeling system for use
in routine air quality management.

Figure 5-2 shows structures of the on-line and off-line air quality modeling systems,
respectively, commonly used at present time.  Table 5-4 compares a few characteristics of on-
line and off-line modeling paradigms.  Each method has associated pros and cons.  Therefore, in
the future versions of the Models-3 CMAQ system, we intend to realize both on-line and off-line
modes of operations through the use of an advanced input/output (I/O) applications programming
interface (API) (Coats, 1996).  Figure 5-3 provides a schematic diagram of the implementation
idea.  A proof-of-concept research effort using MM5 and a prototype version of CMAQ is
underway (Xiu et al., 1998).  However, to accomplish the goals of multiscale on-line/off-line
modeling with one system, a full adaptation of the one-atmosphere concept is needed.

Development of the fully coupled chemistry-transport model to a meteorological modeling
system requires a fundamental rethinking of the atmospheric modeling approach in general.
Some of the suggested requirements for a next generation mesoscale meteorological model that
can be used as a host of the on-line/off-line modeling paradigms are:

• Scaleable dynamics and thermodynamics: Use fully compressible form of governing
set of equations and a flexible coordinate system that can deal with multiscale dynamics.

• Unified governing set of equations: Not only the weather forecasting, dynamics and
thermodynamics research but also the air quality studies should rely on the same general
governing set of equations describing the atmosphere.

• Cell-based mass conservation: As opposed to the simple conservation of domain total
mass, cell-based conservation of the scalar (conserving) quantities is needed.  Use of
proper state variables, such as density and entropy, instead of pressure and temperature,
and representation of governing equations in the conservation form rather than in the
advective form are recommended.
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• State-of-the-art data assimilation method: Not only the surface measurements and
upper air soundings, but also other observation data obtained through the remote sensing
and other in situ means must be included for the data assimilation.

• Multiscale physics descriptions: It has been known that certain parameterizations of
physical processes, including clouds, used in present weather forecasting models are
scale dependent.  General parameterization schemes capable of dealing with a wide
spectrum of spatial and temporal scales are needed.

The Weather Research & Forecasting (WRF) Modeling System (Dudhia et al., 1998), which is
under development by scientists at NCAR and NOAA, could meet most of the above
requirements.  Therefore, the WRF modeling system has the potential to be the future
meteorological model of the ModelsÐ3 CMAQ system to provide the multiscale on-line/off-line
air quality modeling capability simultaneously.

Table 5-4.  Comparison of On-line and Off-line Modeling Paradigms

Off-line Modeling On-line Modeling

Dynamic
Consistency

¥ Need sophisticated interface
processors
¥ Need careful treatment of
meteorology data in AQM

¥ Easier to accomplish, but must have
proper governing equations.
¥ Meteorology data available as
computed

Process Interactions ¥ No two-way interactions between
meteorology and air quality

¥ Two-way interaction
¥ Small error in meteorological data
will cause large problem in air
quality simulation (positive feedback
problem).

System
Characteristics

¥ Systems maintained at different
institutions
¥ Modular at system level.  Different
algorithms can be mixed and tested
¥ Large and diverse user base
¥ Community Involvement

¥ Proprietary ownership
¥ Expensive in terms of computer
resource need (memory and CPU)
¥ Unnecessary repeat of
computations for control strategy
study
¥ Low flexibility
¥ Limited user base
¥ Legacy complex code, which
hinders new development

Application
Characteristics

¥ Easy to test new science concept
¥ Efficient for emissions control
study
¥ Good for independent air quality
process study

¥ Difficult to isolate individual
effects
¥ Excellent for studying feedback of
met. and air quality
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Figure 5-2.  Current On-line and Off-line Air Quality Modeling Paradigms
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Figure 5-3.  Proposed One-atmosphere Air Quality Modeling Paradigms.  Double arrowhead
lines represent possibility of two-way coupling. The coupling of independent modeling
components is accomplished through the I/O API linking the cooperating executables.

5.4 Mass Conservation

For air quality simulations, mass conservation is the most important physical constraint.  This is
because it is unrealistic to have injection of primary pollutant mass through any other means than
a real source emission process, and also because the little perturbations in the mass of both
primary and secondary pollutants will jeopardize the correct simulation of reactions among trace
species.  Therefore, conserving mass of a passive primary trace species is a necessary property of
an air quality model.

5.4.1 Mass Consistency in Meteorological Data

The main objective of many meteorological models has been to predict synoptic or mesoscale
weather phenomena.  Therefore, major design considerations are focused on such issues
important for energy conservation, resolving a spectrum of different wavelengths, and energy
cascade under nonlinear wave-wave interactions.  Conservation of mass is not usually
emphasized as the other constraints listed.  Also, the predictive quantities are generally
thermodynamic parameters, such as temperature and pressure.  The conservation equation for air
density is rarely solved directly in meteorological models because of little operational use of air
density for weather forecasting and no direct measurements to compare.  Usually it is estimated
from the equation for the state of ideal gas or from a hydrostatic relation when hydrostatic
assumptions are made.  Even the predictive equations for the moisture variables are often written
in an advective form rather than a continuity equation form.  On the other hand, air quality
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simulation relies mostly on the continuity equation.  The success of a simulation is heavily
dependent on the consistency of density and wind data (i.e., how well they satisfy the continuity
equation).

The mass inconsistency in density and wind fields from a meteorological model is most likely
caused by one or more of the following reasons:

1. Many meteorological models do not use the proposed ideal set of governing equations.  A
continuity equation for air is not used as one of the prognostic equations and air density is
usually a diagnostic parameter in meteorological models.

2. The prognostic equation for temperature is often used to represent thermodynamics of the
atmosphere.  It is well known that temperature is not a good conserving parameter.

3. Removal of hydrometeors due to condensation or sublimation may subtract and add mass
and heat to the moist atmosphere making the system nonadiabatic (thermodynamically
irreversible) and not mass-conserving.

4. Numerical schemes used in meteorological models are designed to conserve energy,
entropy, rather than the mass of air.

5. The FDDA and overall assimilation process, including the effects of Newtonian forcing
terms in the momentum and temperature equations, may cause inadvertent modification
of the energy balance and subsequent perturbation of air density resulting in mass
conservation problems.

6. Heat, moisture and momentum flux exchanges at the surface-atmosphere interface may
affect the air density distribution.  Usually this effect is not significant as it is often
neglected with the Boussinesq approximation.

7. Flux exchanges at the nesting boundaries for nested runs affect mass balance.

8. Energy and mass balance characteristics of cloud modules used influence air and
moisture density fields.

9. Data output time steps are too large to capture the dynamic variations in the
meteorological models.  If temporally averaged data are provided from the meteorology
model this problem can be minimized (Scamarock, 1998).

5.4.2 Techniques for Mass Conservation in Air Quality Models

As presented in Byun (1999b), species mixing ratios ( ci / ρ) is a useful conserved quantity for

photochemical Eulerian air quality modeling, in particular.  In limited area atmospheric modeling
like an urban or a regional scale simulation, the total air mass in the simulation domain is subject
to the inflow conditions determined by large synoptic scale weather systems.  In this situation,
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the conservation of pollutant mass in the modeling domain can be difficult unless the density and
wind fields are perfectly mass consistent.  When the mass inconsistency in the meteorological
fields is expected, the conservation equation for mixing ratio must be used as a necessary
condition to ensure exact conservation of pollutant mass.  This is accomplished by replacing the

right-hand-side term of Equation 5-11 with Q c
Q

c ii
= ρ

ρ
.  Then, the conservation equation for

pollutant species is rewritten as:

∂
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∂
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(5-24)

This adjustment alone is not sufficient to conserve pollutant mass when the density error term is
not small.  Equation 5-24 shows that the correction term has the same form as a first-order
chemical reaction whose reaction rate is determined by the normalized air density error term.
Table 7-5 in Chapter 7 in this document summarizes correction methods discussed in Byun
(1999b).  Among these, the method based on the two-step procedure (i.e., solving the lhs of
Equation 5-24 first followed by the mass correction step solving for rhs) is expected to be the
most accurate:

( )
( )
( )

( )intc J
c J

J
Ji s

cor i s
T

s
T s=

ρ
ρ , (5-25)

where superscripts cor, int, and T represent corrected, transported (advected), and interpolated
quantities, respectively.  It should be noted that Js  in Equation 5-25 must not be canceled out

even for a coordinate with time independent Js  because the spatial variation of the Jacobian must

be taken into account for the numerical advection.  In the event the total air mass in the
computational domain fluctuates, this correction procedure would affect air quality predictions.
In general, the air quality prediction can be as good as the density prediction of the
meteorological model.  However, considering the nonlinear interactions of trace species in the
chemical production/loss calculations, one could expect serious effects on air quality simulations
when the quality of meteorology data is in doubt.

Byun (1999b) also provides an alternative method to deal with the mass inconsistency in
meteorological data through the modification of wind field, while keeping the density field
intact, before solving the species conservation equation.  Assuming a modified wind field exists
that eliminates the source term in the continuity equation for air, the relationship between the
original and modified wind components is given as:

ˆ ˆV Vs
M

s s= + ∇1
2 1

2α
λ (5-26a)
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where λ is the Lagrangian multiplier to be determined and α1 and α3 are the weights for the

horizontal and vertical wind components. λ  must satisfy the Poisson equation
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∂λ
∂ ρ[ ] , (5-27)

with the associated boundary conditions:

λ= 0 for flow-through boundaries; and

∂λ ∂/ s = 0 for impenetrable boundaries (i.e., at the topographic surface).

The modified wind components are subject to the same top and bottom boundary conditions
imposed by the given coordinate system and dynamic assumptions.

The main difference in the two proposed correction methods, correction after advection versus
correction of wind fields before advection, is practically philosophical.  Should we process a
CTM using meteorological data as supplied, then correct possible errors in the species
concentrations, or should we modify the velocity field to be mass consistent before the
computation of trace gas concentrations in the CTM?  The answer to this question lies in whether
the air quality modeling need is satisfied with simple mixing ratio conservation with the
adjustment process or not.  In case the source-receptor relation is important, it is preferable to
maintain the linearity of transport process using the mass-consistent wind components, which
have been modified at the expense of truthfulness of meteorological fields.  In practice, a
combination of both methods is needed.  The mass consistency error in the meteorological data
must be corrected before air quality simulations with the wind-field adjustment method and the
mixing ratio correction method Equation 5-25 should be applied to compensate the numerical
differences in advection processes between meteorological and air quality models.

5.4.3 Temporal Interpolation of Meteorological Data

Byun (1999b) discusses a mass-conservative temporal interpolation method to complement the
mass inconsistency correction.  Temporal interpolations of density and velocity data are often
required in a CTM because the meteorological model output has a coarser temporal resolution
than the transport time step (which is usually the synchronization time step for a CTM using a
fractional time-step method).

The Jacobian and density at a time t t tn nα α α= − + +( )1 1  between the two consecutive output time

steps, tn  and tn+1, are interpolated with linearity assumed:

( ) ( )( ) ( )J J Js s n s nα α α= − + +1 1 (5-28a)

( ) ( )( ) ( )ρ α ρ α ραJ J Js s n s n= − + +1 1 (5-28b)
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where 0 1≤ ≤α .  It is obvious that the functional form of the Jacobian (which depends on a
vertical coordinate) changes the characteristic of density interpolation.  The premise used here is
that the Jacobian is a fundamental quantity that determines the coordinate system.  When the
Jacobian is interpolated to define the vertical layers through linear interpolation, all other
components involved in the mass conservation equation need to be interpolated accordingly.
Wind components multiplied with the Jacobian-weighted density are interpolated linearly:

( ˆ ) ( )( ˆ ) ( ˆ )ρ α ρ α ραJ J Js s s s n s s nV V V= − + +1 1 (5-29a)

( ˆ ) ( )( ˆ ) ( ˆ )ρ α ρ α ραJ v J v J vs s n s n
3 3 3

11= − + + (5-29b)

and interpolated wind components are derived with:
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However, the proposed scheme, Equation 5-28b, has a problem in such cases where the finite
difference value of ( )ρJs  cannot approximate the linear interpolation of the time rate change of

the quantity, 
∂ ρ

∂
( )J

t
s , adequately.  Usually, this tendency term is not available with the

meteorological data.  However, when the tendency is available or can be estimated with the
diagnostic relations for certain meteorological coordinate systems, a different interpolation rule
must be sought.  Because the tendency term, not ( )ρJs  itself, is a component of the continuity

equation, linear interpolation of the tendency may be more appropriate.  Then, ( )ρJs  at the

interpolation time step must be estimated in such a way that satisfies the continuity as well as the
tendency term (Byun 1999b).

5.5 Conclusion

In this chapter I attempted to bridge the information gap between dynamic meteorologists and air
quality modelers and to promote the proper use of meteorological information in air quality
modeling studies.  It highlights the importance of dynamic consistency in meteorological and air
quality modeling systems.  The effects of the common assumptions used for the atmospheric
study on the mass conservation for trace species have been reviewed.  Although meteorological
data provided by operational meteorological models are usually self-consistent, air quality
modelers need to evaluate the data for exact consistency before they can be used in air quality
simulation.  Minor adjustment of the meteorological data may be needed to assure mass
conservation of trace gas species in CTMs.  Also, characteristics of vertical coordinates have
been discussed.  Certain coordinates provide diagnostic relations that can be used to maintain
mass consistency in meteorological fields.  When meteorological data are needed at sub-output
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time steps within CTM, the interpolation of the data should be done in such a way that the mass
conservation and consistency in the thermodynamic variables are not compromised.

In addition, the on-line and off-line modeling concepts are discussed to provide design guidance
for fully integrated meteorological-chemical models.  To realize the noble goal of implementing
the one-atmosphere modeling system, both the multi-pollutant chemistry and multiscale physics
capability in meteorology are needed.  The following are the features that make the CMAQ air
quality model a suitable key component of an one-atmosphere modeling system:

• Flexible chemistry representations through a mechanism reader;

• Comprehensive list of atmospheric processes that are implemented;

• Modular coding structure and versatile data handling method;

• Capability to handle multiscale dynamics and thermodynamics;

• Fully compressible governing set of equations in generalized coordinates; and

• Robust mixing ratio conservation scheme, even with mass inconsistent meteorology data.

At present, we are encouraged by the efforts of the WRF meteorology model development
groups that focus on issues such as choice of coordinates, grid staggering method, state variables
in the governing equations (e.g., fully compressible), conservation properties (mass and energy)
both in the model equations and numerics, modularity of code, data communication methods,
and coding language.  This entails continuous exchange of ideas between the Models-3 CMAQ
and WRF modeling groups.

To achieve the true one-atmosphere modeling system, we must address multi-pollutant and
multiscale processes that are typically broader than any one group (or institution) has expertise to
address.  The need is well summarized in Dennis (1998):

Considering additional needs for emerging environmental problems such as
coastal eutrophication and ecological damage issues related with cross-media
purview, encompassing the one-atmosphere scope is needed.  This means we have
to work with a more complete one-atmosphere description to facilitate
interactions within it as efficiently as broadly as possible.  One potential answer is
to foster a community modeling perspective and model system framework that is
supported and used by a critical fraction of the scientific community.
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Appendix 5A.Tensor Primer and Derivation of the Continuity Equation in a Generalized
Curvilinear Coordinate System

The Appendix 5A summarizes essential information needed for understanding the governing
equations represented in tensor form.  It includes tensor primer and derivation of the continuity
equation in a generalized coordinate system.  Readers are referred to classic references such as
Dutton (1976), Defrise (1964), and Pielke (1984) for the details.

5A.1 Tensor Analysis in a Curvilinear Coordinate System

Cartesian coordinates are those curvilinear systems in which the positions of fluid elements are
determined by their distance from intersecting planes.  Although the Cartesian coordinates with
orthogonal intersecting planes are specifically called rectangular, the adjective rectangular is
often dropped.  To represent formulations governing atmospheric phenomena in a coordinate
system other than a rectangular Cartesian one, a tensor representation is often used.  This
generally involves determination of the unit vectors in the new system, determination of the
components of a tensor with respect to theses unit vectors, and determination of the differential
derivatives (e.g., divergence, curl, and gradient) of a tensor.  All these quantities depend
explicitly on the form of the new coordinate system and it is always convenient to express these
quantities in a rectangular Cartesian coordinate system for comparison purposes.

In atmospheric modeling one is frequently led to adopt a curvilinear coordinate system other than
the Cartesian coordinates depending on the problem under consideration.  A general curvilinear
coordinate system can be defined relative to a Cartesian system x = (x1,x2 , x3)  represented by
three families of curved surfaces

ˆ ( , , , )x x x x ti
i= ψ 1 2 3 , i = 1,2,3 (5A-1)

Here, the symbols with carat (^) are used to denote a transformed curvilinear system.  In vector
form, it is given as:

ˆ ( , )x x= ψψ t . (5A-2)

When the curvilinear system ψ is at rest relative to the rectangular Cartesian system, i.e.,
independent of time, ˆ ( , , )x x x xi

i= ψ 1 2 3 , then the system is called a Euclidean system.  Here we

assume that components of vector x̂ , ( ˆ , ˆ , ˆ )x x x1 2 3 , are three independent, single-valued, and

differentiable scalar point functions such that to every point of some region ℜ̂ of three-
dimensional Euclidean space, there is a corresponding unique triple of values (x1, x2, x3) in the

Cartesian space ℜ.  In other words, the function ψ prescribes one and only one value of x and is
such that the three coordinates are independent  of each other.  Also, we assume continuity of the
function ψ.  Then the new coordinates x̂  are called curvilinear and the surfaces x̂1 = ψ1 =
constant, x̂2= ψ 2  = constant, x̂3= ψ 3  = constant are called coordinate surfaces.  The curvilinear

coordinates ( ˆ , ˆ , ˆ )x x x1 2 3  should be independent, single-valued, and differentiable.  As shown in
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Figure 5A-1, the vector OP   pointing a parcel of air enclosed by the boundary ∂Ω  can be
represented either in Cartesian or Euclidean curvilinear coordinate systems.

x̂1

x̂2

x̂3

k
i j

P

∂Ω

τ̂
1

τ̂
2

τ̂
3

x1 = x

x2 = y

x3 = z

ˆℜ
ℜ

O

Figure 5A-1.  Coordinates of the Cartesian and Curvilinear Coordinates. ℜ and ℜ̂ represent
Cartesian and Euclidean spaces, respectively.

Note that the transformation involves with not only the spatial variables but also time as an
independent variable.  We need a tensor calculus in the four variables of space-time with regard
to the coordinate transformations.  Defrise (1964) used the term Ôworld tensorÕ to distinguish it
from the time independent Euclidean tensor.

5A.2 Basis Vectors

In a rectangular coordinate system, directions of the basis vectors are constant in space.
However, in a general curvilinear coordinates, directions of the basis vectors will vary from point
to point and no one set of directions can be regarded as more natural than any other for the
directions of base vectors to define the local base vectors.   Usually, an upper index denotes
contravariant, and a lower index denotes covariant tensors, respectively.

With the coordinates defined by Equation 5A-2, the chain rule provides the two expansions:

d
x

dxj
jx

x= ∂
∂ˆ

ˆ (5A-3)
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dx
x

x
dx x di

i

j
j iˆ

ˆ
( ˆ )= = ∇ •∂

∂
x (5A-4)

Here, the Einstein summation convention (i.e., the repeated indices on two quantities that are
multiplied by each other are summed over) has been implied.  The symbol (¥) represents the
inner product.   An inner product of two vectors yields a scalar that is invariant of the coordinate
system.  An inner product of two tensors results in contraction of the rank in the resulting tensor.

From Equations 5A-3 and 5A-4, we can form two distinct sets of basis vectors.  One is the
tangential vectors:

ˆ
ˆ

ττi jx
= ∂

∂
x

(5A-5)

that reveals the variation of the position vector as it traces out a curve in which x̂ j  varies and the
other two coordinates are constant.  Hence τ̂τi  is tangent to the curve along which only x̂ j  varies.

The other set of basis vectors is the normal vectors of the surfaces where x̂ i  = constant:

ˆ ˆηηi = ∇xi (5A-6)

While there could be many choices, the tangential  ( τ̂τi) and normal ( η̂ηi) vectors are considered as

a natural choice for the local basis vectors for the curvilinear coordinate system.  Using
Equations 5A-5 and 5A-6, one can show that:

ˆ ˆ
 

 
τ η δi

j
i
j

i j

i j
⊗ = =

=
≠





1

0
(5A-7)

where δ i
j  is the Kronecker delta and the symbol ⊗  represents the outer product.  Outer product

of two tensors with rank r1 and r2 yields a tensor with rank (r1+r2 ).

A curvilinear system is not orthogonal when not all the off-diagonal components of ˆ ˆη ηi j⊗  and
ˆ ˆτ τi j⊗  vanish.  The orthogonal curvilinear coordinate system is often used for interesting

engineering problems that can be described with simple geometric orthogonal coordinates, such
as spherical, cylindrical coordinate systems.  Usually, meteorological coordinates are not
orthogonal and therefore, the vector calculus specific for the orthogonal curvilinear coordinates
must not be used.

5A.3 Distance and Metric Tensor in a Curvilinear Coordinate System

The differential element of distance ds can be expressed in terms of the curvilinear coordinates
as:

( )
ˆ

ˆ
ˆ

ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ ˆds dx dx
x

x
dx

x

x
dx

x

x
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dx dx dx dxi
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j k2 = = = =∂
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γ (5A-8)
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= = ⊗ττ ττ (5A-9)

Because of its obvious role in the measurement of distance, the quantity γ̂ ik  is called the metric
tensor.  It is a symmetric tensor.  As such, it has an inverse matrix γ̂ ik , which will satisfy
following condition:

ˆ
ˆ ˆ

 ˆ ˆγ ∂
∂
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ik
i

l
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The Levi-Cevita symbol ε used in Equation 5-1 is an antisymmetric tensor defined as

ε ijk

if i j j k or i k

if i j k are an even permutation of

if i j k are an odd permutation of

=
−







= = =0

1

1

1 2 3

1 2 3

  

 ,  ,   

 , ,       , ,

 , ,       , ,

(5A-12)

Using the Levi-Cevita symbol, the cross vector product A B C= ×  can be written as
A B Ci ijk

j k= ε .

One of the uses of the metric tensor and its inverse is for converting a covariant tensor to a
contravariant tensor, and vice versa.  Another important usage of the metric tensor is the
estimation of the Jacobian determinant of the transformation, which is defined as:

J = ˆ det( ˆ )γ γ= ij  [det( ˆ )]= −γ ij 1 (5A-13)

where J J
x x x

x x xx
x= ={ }

( , , )
( ˆ , ˆ , ˆ )

ˆ ∂
∂

1 2 3

1 2 3

.  Note that the Jacobian matrix and the metric tensor are related

as:

ˆ { } { }ˆ ˆγ ij x
x T

x
xJ J= (5A-14)

A necessary and sufficient condition that ( ˆ , ˆ , ˆ )x x x1 2 3  be orthogonal at every point in ℜ is that the

components of the metric tensor vanish for i ≠ j.

5A.4 Covariant Tensor and Contravariant Tensor

In this section, the covariant and contravariant tensor concepts are presented using a vector,
which is a simple form of a tensor (i.e., a tensor of rank one).  A distance in a Euclidean space
can be represented in two corresponding sets of tangential basis vectors:
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ds dx dxj
j

l
l= =ˆ τ̂ τ (5A-15)

where

ˆ
ˆ

τ ∂
∂

τj

l

j l

x

x
= (5A-16)

Any vector that transforms similarly to the tangential basis vector τ̂τj  is called as a covariant

vector.  On the other hand, when a vector transforms like the local normal basis vectors η̂ηi , we
call it a contravariant vector:

ˆ
ˆ

v
x

x
vk

k

j
j= ∂

∂
, (5A-17)

where vj  is the components of V with respect to the normal base vectors.

Since a vector A is invariant between coordinate systems, we can express it using either
contravariant components (i.e., with the tangential basis vectors) or covariant components (i.e.,
with the normal basis vectors):

A = =A Aj
j l

l
ˆ ˆη τ (5A-18)

Using Equation 5A-7, one can readily find the covariant and contravariant components with:

Aj j= •A τ̂ (5A-19a)

Ai i= •A η̂ (5A-19b)

5A.5 Derivatives, Total Derivative, and Divergence in Euclidean Coordinate

Covariant derivative of a contravariant vector is defined as:

ˆ
ˆ

ˆ
ˆ ˆ

;V
V

x
Vk

i
i

k kj
i j= +∂

∂
Γ ,     ˆ ˆ

ˆ ˆ
Γkj

i
i

l

l

k j

x

x

x

x x
= ∂

∂
∂

∂ ∂

2

. (5A-20)

Similarly, covariant derivative of a covariant vector is defined as:

˜
˜

˜
˜ ˜

;A
A

x
Ai k

i

k ki
l l= −∂

∂
Γ ,    ˜ ˜

˜ ˜
Γki

l
l

r

r

k i

x

x

x

x x
= ∂

∂
∂

∂ ∂

2

. (5A-21)

The Christoffel symbol ˆ Γ kj
i  is not a tensor but it is an important quantity relating the derivatives

in the curvilinear coordinate system with those in the original Cartesian coordinate system.  Its
relation with the metric tensor is:
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ˆ ˆ (
ˆ ˆ ˆ

)Γkj
i jl il

k
kl
i

ik
lx x x

= + −1
2

γ ∂γ
∂

∂γ
∂

∂γ
∂

(5A-22)

Divergence of a contravariant vector ˆ W  , wind for example, can be expressed as:

ˆ
ˆ

ˆ
ˆ ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ;W
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∂

∂
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∂
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     = + =1 1
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ˆ
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ˆ
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( ˆ ˆ )
ˆγ

γ ∂
∂

∂ γ
∂ γ

∂ γ
∂
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x
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i (5A-23)

The total derivative of a covariant vector A is represented in a Cartesian coordinate as

d

dt t

A A
v A= + • ∇∂

∂
 = +∂

∂
∂
∂

A

t
v

A

x
i j i

j
ˆ

ˆ
(5A-24)

where v • ∇ = = =v
x

v
x

x x
v

x
l

l
j

l

j l
j

j

∂
∂

∂
∂

∂
∂

∂
∂

ˆ
ˆ

ˆ
ˆ

 was used.  This expression is correct in any holonomic

coordinate system where the covariant component Ai, metric tensor, velocity, and xk all refer to
the same system whether or not the coordinate system is time dependent.

5A.6 Continuity Equation in Generalized Curvilinear Coordinate System

Many practical coordinate systems used for atmospheric studies are time dependent.  Consider
the case when a volume element that confines the fluid moves with the fluid.  Then, this is also
the velocity of the fluid in the respective coordinate system.  A direct conversion from the
continuity equation expressed in a Cartesian coordinate system does not work because the
divergence term should take into account for the time rate change of volume element as well the
same for the time dependent curvilinear coordinates.  In this situation, the Lie derivative concept
(e.g., Bishop and Goldberg, 1968) becomes appropriate.  A Lie derivative is obtained by
differentiating a function with respect to the parameters along the moving frame of reference.
Following Defrise (1964), one can show that a Lie derivative of a mass volume integral along the
moving frame vanishes:

  L( )δM = 0 (5A-25)

where δ ρδ ρ γ δM V V= = ˆ ˆ , δ δ δ δV x x x= 1 2 3 , andδ δ δ δˆ ˆ ˆ ˆV x x x= 1 2 3 .  Therefore:

  
δ ρ γ δ

∂ρ γ
∂

ρ γ ∂
∂

µ
µ

µ

µ
ˆ ( ˆ ) ˆ( ˆ

ˆ

ˆ
ˆ

ˆ
ˆ

)V V v
x

v

x
L = +

= =δ
∂ ρ γ

∂

µ

µ
ˆ ( ˆ ˆ )

ˆ
V

v

x
0 (5A-26)
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where, index µ = 1,4; x̂ t4 =  and v̂4 1= .  Using the same notation convention, the contravariant
velocity is defined as for the coordinates that moves with fluid:

ˆ
ˆ

v
x

x
vµ

µ

α
α∂

∂
= ; α, µ = 1,4 (5A-27)

Note that one cannot derive the same result by directly replacing the divergence term in the
continuity equation for a Cartesian coordinate system because the volume element is dependent
on time as well.

Alternatively, one can obtain Equation 5A-26 by a method based on the finite derivative of a
volume integral with the application of the Leibnitz rule.  This method of derivation helps to
visualize the meaning of terms in the equation more clearly than the procedure based on the Lie
derivative.  Volume integral in a Cartesian coordinates is defined as:

F f x x x V= ∫∫∫ ( , , )
∂

δ
Ω

1 2 3 (5A-28)

where f is a conservative quantity, such as density or total kinetic energy.  Equation 5A-28 can
be rewritten in the curvilinear coordinate as:

F f x x x V= ∫∫∫ (ˆ , ˆ , ˆ ) ˆ ˆ
∂

γ δ
Ω

1 2 3 (5A-29)

For example, if f =1:

F V V V V= = = =∫∫∫ ∫∫∫
∂

∂
∂

∂δ γ δ γ
Ω

Ω
Ω

Ω
ˆ ˆ ˆ ˆ (5A-30)

The meaning of the metric becomes very clearÐit is a measure of volume correction for the
transformed coordinates.

F f x x x V h x x x x x x= =∫∫∫ ∫∫∫( ˆ , ˆ , ˆ ) ˆ ˆ ( ˆ , ˆ , ˆ ) ˆ ˆ ˆ1 2 3 1 2 3 1 2 3

∂ ∂

γ δ δ δ δ
Ω Ω

(5A-31)

where h x x x f x x x( ˆ , ˆ , ˆ ) ( ˆ , ˆ , ˆ ) ˆ1 2 3 1 2 3= γ  was used.

Consider a time derivative following the control volume.  Applying a three-dimensional version
of Leibnitz rule for the time differential of the integral, we get:

δ
δ

δ
δ

δ δ δ
∂

F

t t
h x x x x x x
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volume
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ˆ , ˆ , ˆ

∂
∂

δ δ δ
∂

h

t
x x x

x x x1 2 3

1 2 3

Ω
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Then, using the following relation with the aid of Figure 5A-2:
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∂
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= − (5A-33)

we obtain an integral equation:
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Figure 5A-2.  Volume Element in a Curvilinear Coordinate System

When f = ρ  (density) , then F x x x x x x M= =∫∫∫ ρ δ δ δ
∂

( , , )1 2 3 1 2 3

Ω

 = mass of the volume element.

Therefore, the conservation law states:
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δ
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δ
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following
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= = 0 (5A-35)

Here, for example, 
dx

dt
bd

ˆ2

is the velocity of the boundary of the volume element in the curvilinear

coordinate x̂2 .  Because the volume element confines the fluid and moves with the fluid, this is
velocity component of the fluid in the curvilinear coordinate x̂2 .  Then, we have

∂ ρ γ
∂

∂ ρ γ
∂

δ
∂

( ˆ ) ( ˆ ˆ )
ˆ
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









=∫∫∫
Ω

0 (5A-36)

Since above integral should be satisfied for an arbitrarily infinitesimal volume element, we
obtain the continuity equation in differential equation form for the time-dependent curvilinear
coordinate as follows:

∂ ρ γ
∂

∂ ρ γ
∂

( ˆ ) ( ˆ ˆ )
ˆt

v

x

j

j+ = 0 (5A-37)

http://www.epa.gov/asmdnerl/models3/doc/science/ch06.pdf
http://www.epa.gov/asmdnerl/models3/doc/science/ch04b.pdf

